Select Page

Iridian Whitepapers

Effect of an optical coating on in-band and out-of-band transmitted and reflected wavefront error measurements

The wavefront error (WE) of a surface with an optical coating (“filter”) is ideally measured at the in-band wavelength of the filter. However, quite often this is not possible, requiring that the filter be measured at an out-of-band wavelength (typically 633 nm), assuming that the filter transmits (for transmitted WE, or TWE) or reflects (for reflected WE, or RWE) at this wavelength. This out-of-band TWE/RWE is generally assumed to provide a good estimation of the desired in-band TWE/RWE. It will be shown in this paper that this is not the case for a large class of filters (i.e., bandpass) where the group delay is significantly different at the in-band and out-of-band wavelengths and where the optical filter exhibits a thickness non-uniformity across the surface.

(more...)



Hybrid Gain Flattening Filters in Optical Fiber Amplifiers

Using an Iridian Spectral Technologies Hybrid GFF allows system designers to maximize cost effectiveness, capability, and system simplicity in one fell swoop. Every company’s performance and cost demands are different, so you need a supplier with the experience, technical knowledge base, and flexibility to adapt to your systems’ and business’s changing needs.

Just as the electric car starter eclipsed the engine hand crank, a superior option has emerged for optical signal filtering that will redefine how system design is approached. The only real decision is whether you’ll be an early adopter, or rush to catch up later

(more...)


Large Format Narrow Bandpass Filters – A Uniformity Challenge

1       Introduction Large format (>100 mm diameter), narrow bandpass filters (NBPF) are required in many fields. Applications requiring a large field of view drive the need for large collection optics, however high wavelength selectivity provided by narrow, flat-top bandpass optical filtering is also required to facilitate specific and selective analysis of a phenomena or substance […]

(more...)


LiDAR and Optical Filters for Autonomous Vehicles

“Measurement is the first step that leads to control and eventually to improvement. If you can’t measure something, you can’t understand it. If you can’t understand it, you can’t control it. If you can’t control it, you can’t improve it.”

(more...)


Messages From Above – Optical Satcom Lights the Way

LiDAR, short for light detection and ranging, uses pulsed lasers to accurately calculate distances as well as correctly detect the size and shape of objects. The high resolution of the information — LiDAR can resolve to a few centimeters from more than 100 meters away — and the ability to create accurate model three-dimensional images have made the technology critical in many applications. Some uses include autonomous vehicles and automobile crash avoidance, surveying, environment, construction, agriculture, oil and gas exploration, and pollution modeling.

(more...)


Optical Filters for Sensors and Detectors

Clear the Air: New Optical Filters for Sensors and Detectors Environmental air quality; proximity control; crowd counting; climate change; the “Internet of Things”.  Our world has become an increasingly monitored place where the proliferation of sensors and detectors allows us, and our devices, to better understand and interact with our environments.  Photonics is one of […]

(more...)


Remote Sensing With LiDAR Requires Optical Filter Trade-Offs

LiDAR, short for light detection and ranging, uses pulsed lasers to accurately calculate distances as well as correctly detect the size and shape of objects. The high resolution of the information — LiDAR can resolve to a few centimeters from more than 100 meters away — and the ability to create accurate model three-dimensional images have made the technology critical in many applications. Some uses include autonomous vehicles and automobile crash avoidance, surveying, environment, construction, agriculture, oil and gas exploration, and pollution modeling.

(more...)


The Right Filter for MWIR Equipment

“Measurement is the first step that leads to control and eventually to improvement. If you can’t measure something, you can’t understand it. If you can’t understand it, you can’t control it. If you can’t control it, you can’t improve it.”

(more...)